Vector bundles on contractible smooth schemes

نویسندگان

  • Aravind Asok
  • Brent Doran
چکیده

We discuss algebraic vector bundles on smooth k-schemes X contractible from the standpoint of A-homotopy theory; when k = C, the smooth manifolds X(C) are contractible as topological spaces. The integral algebraic K-theory and integral motivic cohomology of such schemes are that of Spec k. One might hope that furthermore, and in analogy with the classification of topological vector bundles on manifolds, algebraic vector bundles on such schemes are all isomorphic to trivial bundles; this is almost certainly true when the scheme is affine. However, in the non-affine case this is false: we show that (essentially) every smooth A-contractible strictly quasi-affine scheme that admits a U -torsor whose total space is affine, for U a unipotent group, possesses a non-trivial vector bundle. Indeed we produce explicit arbitrary dimensional families of non-isomorphic such schemes, with each scheme in the family equipped with “as many” (i.e., arbitrary dimensional moduli of) non-isomorphic vector bundles, of every sufficiently large rank n, as one desires; neither the schemes nor the vector bundles on them are distinguishable by algebraic K-theory. We also discuss the triviality of vector bundles for certain smooth complex affine varieties whose underlying complex manifolds are contractible, but that are not necessarily A-contractible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Bundles and Holonomy Group Schemes of Varieties

We introduce a new category of lf-graded vector bundles on a smooth projective variety X over an algebraically closed field k. This category includes in particular all stable bundles. We then show that the category of strongly lf-graded bundles is a neutral Tannaka category. We study the associated GrothendieckTannaka group scheme. This enables us to prove an analogue of the classical Narasimha...

متن کامل

The Lie Algebra of Smooth Sections of a T-bundle

In this article, we generalize the concept of the Lie algebra of vector fields to the set of smooth sections of a T-bundle which is by definition a canonical generalization of the concept of a tangent bundle. We define a Lie bracket multiplication on this set so that it becomes a Lie algebra. In the particular case of tangent bundles this Lie algebra coincides with the Lie algebra of vector fie...

متن کامل

Dimension Estimates for Hilbert Schemes and Effective Base Point Freeness on Moduli Spaces of Vector Bundles on Curves

It is a well established fact that the solutions of many problems involving families of vector bundles should essentially depend on good estimates for the dimension of the Hilbert schemes of coherent quotients of a given bundle. Deformation theory provides basic cohomological dimension bounds, but most of the time the cohomology groups involved are hard to estimate accurately and moreover do no...

متن کامل

Foundations of Algebraic Geometry Class 21

Welcome back! Where we’re going this quarter: last quarter, we established the objects of study: varieties or schemes. This quarter we’ll be mostly concerned with important means of studying them: vector bundles quasicoherent sheaves and cohomology thereof. As a punchline for this quarter, I hope to say a lot of things about curves (Riemann surfaces) at the end of the quarter. However, in keepi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007